Science Advances

advances.sciencemag.org/cgi/content/full/4/11/eaat2993/DC1

Supplementary Materials for

Congo Basin forest loss dominated by increasing smallholder clearing

Alexandra Tyukavina*, Matthew C. Hansen, Peter Potapov, Diana Parker, Chima Okpa, Stephen V. Stehman, Indrani Kommareddy, Svetlana Turubanova

*Corresponding author. Email: atyukav@umd.edu

Published 7 November 2018, *Sci. Adv.* **4**, eaat2993 (2018) DOI: 10.1126/sciadv.aat2993

This PDF file includes:

Fig. S1. Conceptual diagram of forest loss cases distinguishable via visual interpretation of a single 30-m Landsat pixel.

Fig. S2. Examples of predisturbance forest types.

Fig. S3. Examples of forest disturbance drivers.

Fig. S4. Study area and sampling strata.

Fig. S5. Availability of cloud-free 16-day Landsat observations for the sampled pixels.

Fig. S6. Sampled pixels with high and low confidence of presence/absence of forest loss.

Fig. S7. Comparison of annual forest loss estimates for DRC.

Table S1. Summary of selected socioeconomic indicators for the study countries.

Table S2A. Total 2001 to 2014 forest disturbance area by disturbance driver and predisturbance forest type (million hectares \pm SE).

Table S2B. Annual forest loss area by forest disturbance driver and predisturbance forest type in all countries (million hectares \pm SE).

Table S3. Comparison of forest loss estimates for DRC.

Table S4. Major sources of uncertainty during sample interpretation and measures to address them.

Table S5. Distribution of sampled pixels (n_h) among the country poststrata and three sampling design strata (loss, probable loss, and no loss) and strata sizes (N_h) .

Supplementary Materials

Fig. S1. Conceptual diagram of forest loss cases distinguishable via visual interpretation of a single 30-m Landsat pixel. (**A**) and (**B**) represent pixels interpreted as 100% of a pixel lost in the current analysis, which includes 75-100% pixel loss (B), not visually distinguishable in Landsat data from complete pixel clearing; (**C**–**F**) represent partial canopy loss, interpreted as 50% of pixel lost, which includes anything between 25 and 75% of a pixel lost; (**G**–**I**) represent pixels interpreted as 0% of a pixel lost, which may include clearing of less than a quarter pixel (H), or absence of forest loss (G and I). Note that cases (B) and (H) should cancel each other and not introduce any bias into interpretation. Pixels with tree canopy cover <25% are considered nonforested in the current analysis.

Fig. S2. Examples of predisturbance forest types. (**A**) primary and mature secondary dense humid tropical forests (HTF), (**B**) young secondary dense HTF, (**C**) primary woodlands and dry forests, (**D**) secondary woodlands and sparse secondary HTF, (**E**) plantations. Left: Landsat annual cloud-free composites; right: very high-resolution (<1 m) imagery from Google Earth. Red square corresponds to the sampled pixel.

Fig. S3. Examples of forest disturbance drivers. (**A**) small-scale forest clearing for rotational agriculture and charcoal production (contribution of charcoal production does not exceed 10% of the class area (*42*)), (**B**) small-scale clearing for semi-permanent agriculture, (**C**) large-scale agro-industrial clearing, (**D**) road construction, (**E**) residential construction, (**F**) commercial construction, (**G**) mining, (**H**) industrial selective logging, (**I**) fire, (**J**) river meandering. Images are annual cloud-free Landsat composites: left – pre-disturbance, right – post-disturbance. Red square corresponds to the sampled pixel. White circle in (**H**) is a 120-m buffer used to define the areas affected by selective logging.

Fig. S4. Study area and sampling strata.

Fig. S5. Availability of cloud-free 16-day Landsat observations for the sampled pixels. (A) Average number of cloud-free observations per year. (B) Number of years with zero cloud-free observations. (C) Box plots of the number of cloud-free observations for each sampled pixel in each year.

Fig. S6. Sampled pixels with high and low confidence of presence/absence of forest loss.

Fig. S7. Comparison of annual forest loss estimates for DRC. Error bars represent \pm one standard error.

Table S1. Summary of selected socioeconomic indicators for the study countries. Data sources: Forest cover area – FAO FRA 2015; Population and Gross Domestic Product (GDP) - World Development Indicators, World Bank; Governance rank - World Governance Indicators, Political Stability and Absence of Violence, World Bank; Human Development Index (HDI) - UNDP Human Development Report 2015. Governance percentile rank ranges from 0 to 100, with higher values corresponding to better governance. HDI ranges from 1 to 188 with higher values corresponding to lower HDI. GDP rank is out of 195 countries globally with higher values corresponding to lower GDP. Country acronyms: CAM – Cameroon, CAR – Central African Republic, DRC – Democratic Republic of the Congo, EQG – Equatorial Guinea, GAB – Gabon, RoC – Republic of the Congo.

	Forest cover	Population			Governance			Human Development Index			Gross Domestic Product		
Country	Area (Mha),	(million. people)		% of total	2000	2014	Δ	Average annual growth (%)		2014	Average annual growth (%)		2014
	2000	2000 2014	2014	^*			-	2000 -	2010 -	ганк	2000 -	2010 -	Tailk
								2010	2014		2010	2014	
CAM	22.1	15.3	22.2	19	28	13	↓	1.07	1.32	153	3.4	5.1	96
CAR	22.4	3.8	4.5	2	13	0.5	↓	1.58	-0.84	187	2.1	-7.1	170
DRC	157.2	47.1	73.7	72	0	5	1	2.18	1.52	176	3.6	8.0	93
EQG	1.7	0.6	1.1	1	65	53	\downarrow	1.18	-0.18	138	18.5	2.5	105
GAB	22.0	1.2	1.9	2	38	32	\downarrow	0.48	0.76	110	1.2	5.6	110
RoC	22.6	3.2	4.9	4	17	31	Î	1.25	1.61	136	5.0	4.4	120

*Percent contribution of each country to the total 2000-2014 population increase in the region

Table S2A. Total 2001 to 2014 forest disturbance area by disturbance driver and

predisturbance forest type (million hectares ± SE). Pre-disturbance (year 2000) forest types: PF – primary and mature secondary dense humid tropical forests (HTF), SF – young secondary dense HTF, PW – primary woodlands and dry forests, SW – secondary woodlands and sparse secondary HTF, PL – plantations. Loss categories contributing >1% to the total forest disturbance area of the study region are highlighted in yellow. Forest clearing for small-scale rotational agriculture includes clearing for charcoal production, the contribution of which does not exceed 10% of the class area (42).

			Forest clea	ring for							
		Agriculture		Count			Industrial		Natural		
Forest	Smal	ll-scale	_	Const	ruction		Selective	Fire	Forest	Total	
type	Rotational + Charcoal Production	Semi-permanent	Large-scale	Roads	Residential & Commercial	Mining	Logging		Disturbances		
	All countries										
PF	$\frac{5.089 \pm 0.193}{5.089 \pm 0.193}$	-	0.094 ± 0.021	0.037 ± 0.017	0.008 ± 0.006	0.006 ± 0.004	1.572 ± 0.290	0.418 ± 0.133	0.017 ± 0.010	7.241 ± 0.372	
SF	$\frac{5.644 \pm 0.292}{2}$	-	0.008 ± 0.006	0.025 ± 0.009	0.056 ± 0.017	_	_	0.039 ± 0.023	_	5.772 ± 0.293	
PW	$\frac{2.163 \pm 0.220}{2.163 \pm 0.220}$	0.345 ± 0.085	0.005 ± 0.005	0.006 ± 0.006	0.079 ± 0.041	_	_	0.170 ± 0.103	0.006 ± 0.006	2.774 ± 0.260	
SW	<mark>0.668 ± 0.138</mark>	_	-	-	0.023 ± 0.015	-	_	0.005 ± 0.005	-	0.696 ± 0.139	
PL	0.023 ± 0.015	_	0.050 ± 0.019	-	-	-	_	_	-	0.073 ± 0.024	
Total	13.587 ± 0.415	0.345 ± 0.085	0.157 ± 0.029	0.068 ± 0.021	0.166 ± 0.047	0.006 ± 0.004	1.572 ± 0.290	0.633 ± 0.170	0.022 ± 0.011	16.556 ± 0.538	
	Cameroon										
PF	0.405 ± 0.051	-	0.072 ± 0.019	0.005 ± 0.005	0.005 ± 0.005	-	0.358 ± 0.142	0.023 ± 0.015	-	0.870 ± 0.151	
SF	0.462 ± 0.119	-	-	-	-	-	_	-	-	0.462 ± 0.119	
PW	0.023 ± 0.015	0.172 ± 0.076	-	0.006 ± 0.006	0.013 ± 0.013	-	_	-	-	0.215 ± 0.079	
SW	0.048 ± 0.023	-	-	-	0.018 ± 0.014	-	-	-	-	0.066 ± 0.027	
PL	0.013 ± 0.013	-	0.016 ± 0.009	-	-	-	-	-	-	0.029 ± 0.016	
Total	0.952 ± 0.131	0.172 ± 0.076	0.089 ± 0.020	0.012 ± 0.008	0.036 ± 0.019	-	0.358 ± 0.142	0.023 ± 0.015	-	1.642 ± 0.206	
	Central African	Republic									
PF	0.197 ± 0.049	_	-	-	-	0.003 ± 0.003	0.013 ± 0.013	0.017 ± 0.010	-	0.230 ± 0.052	
SF	0.011 ± 0.008	-	-	-	-	_	_	_	_	0.011 ± 0.008	
PW	0.832 ± 0.132	0.048 ± 0.021	-	-	-	-	_	0.026 ± 0.018	0.006 ± 0.006	0.911 ± 0.134	
SW	0.076 ± 0.023	-	-	_	-	-	-	-	_	0.076 ± 0.023	
PL	-	-	-	_	-	-	-	-	_	_	
Total	1.116 ± 0.139	0.048 ± 0.021	-	_	-	0.003 ± 0.003	0.013 ± 0.013	0.043 ± 0.021	0.006 ± 0.006	1.228 ± 0.141	
	Democratic Rep	oublic of the Cong	0								
PF	4.033 ± 0.166	-	0.008 ± 0.006	0.005 ± 0.005	0.003 ± 0.003	-	0.098 ± 0.074	0.337 ± 0.129	0.017 ± 0.01	4.499 ± 0.223	
SF	4.722 ± 0.249	-	-	0.005 ± 0.005	0.037 ± 0.014	_	_	0.013 ± 0.013	_	4.777 ± 0.249	
PW	1.308 ± 0.176	0.125 ± 0.031	0.005 ± 0.005	-	0.062 ± 0.039	_	_	0.144 ± 0.102	_	1.643 ± 0.209	
SW	0.475 ± 0.115	-	-	-	0.005 ± 0.005	_	_	0.005 ± 0.005	_	0.485 ± 0.115	
PL	0.010 ± 0.007	-	0.021 ± 0.010	-	-	_	_	_	_	0.031 ± 0.013	
Total	10.548 ± 0.344	0.125 ± 0.031	0.033 ± 0.013	0.010 ± 0.007	0.107 ± 0.042	_	0.098 ± 0.074	0.498 ± 0.165	0.017 ± 0.01	11.436 ± 0.389	
	Equatorial Gui	nea									
PF	0.014 ± 0.008	-	-	0.003 ± 0.003	-	0.003 ± 0.003	_	_	-	0.021 ± 0.009	
SF	0.068 ± 0.036	_	0.003 ± 0.003	0.010 ± 0.005	0.007 ± 0.005	_	_	_	-	0.088 ± 0.037	
PW	_	_	_	_	_	_	_	_	_	_	

			Forest clear	ring for							
		Agriculture		Construction			Industrial		Natural		
Forest	Smal	ll-scale				Mining	Selective	Fire	Forest	Total	
type	Rotational + Charcoal Production	Semi-permanent	Large-scale	Roads	Residential & Commercial	Winning	Logging		Disturbances		
SW	-	_	_	_	_	_	_	_	_	_	
PL	-	_	_	_	_	-	-	_	-	-	
Total	0.082 ± 0.037	-	0.003 ± 0.003	0.014 ± 0.006	0.007 ± 0.005	0.003 ± 0.003	_	-	_	0.109 ± 0.037	
	Gabon										
PF	0.133 ± 0.028	-	0.014 ± 0.008	0.010 ± 0.008	-	_	0.483 ± 0.157	0.015 ± 0.015	_	0.655 ± 0.160	
SF	0.102 ± 0.032	_	0.005 ± 0.005	0.007 ± 0.005	0.012 ± 0.008	_	-	_	_	0.125 ± 0.033	
PW	-	-	-	-	0.005 ± 0.005	_	-	-	_	0.005 ± 0.005	
SW	-	-	-	-	-	-	-	-	_	-	
PL	-	_	_	_	_	_	-	_	_	_	
Total	0.234 ± 0.041	-	0.018 ± 0.009	0.017 ± 0.009	0.017 ± 0.009	_	0.483 ± 0.157	0.015 ± 0.015	_	0.784 ± 0.161	
	Republic of the	Congo									
PF	0.306 ± 0.060	-	-	0.013 ± 0.013	-	-	0.620 ± 0.184	0.027 ± 0.019	_	0.966 ± 0.194	
SF	0.280 ± 0.082	-	_	0.003 ± 0.003	_	_	_	0.027 ± 0.019	_	0.310 ± 0.084	
PW	-	-	-	-	-	_	-	-	_	-	
SW	0.068 ± 0.068	_	_	_	_	_	-	_	_	0.068 ± 0.068	
PL	-	-	0.013 ± 0.013	-	-	_	_	-	_	0.013 ± 0.013	
Total	0.655 ± 0.121	-	0.013 ± 0.013	0.016 ± 0.014	_	_	0.620 ± 0.184	0.053 ± 0.026	_	1.358 ± 0.219	

Table S2B. Annual forest loss area by forest disturbance driver and predisturbance forest type in all countries (million hectares \pm SE). Forest clearing for small-scale rotational agriculture includes clearing for charcoal production, the contribution of which does not exceed 10% of the class area (42).

				8							
		Agriculture			Construction				Natural		
Year	Smal Rotational + Charcoal	ll-scale Semi-permanent	Large-scale	Roads	Roads Residential & Mining		Selective Logging	Fire	Forest Disturbances	Total	
	Production										
2001	All forest types 1.099 ± 0.154	0.008 ± 0.006	0.008 + 0.006	_	0.002 + 0.002	_	0 172 + 0 099	0.149 ± 0.102	_	1.438 ± 0.210	
2002	1.082 ± 0.132	0.023 ± 0.015	0.013 + 0.013	_	_	_	0.198 + 0.105	_	_	1.316 ± 0.170	
2003	0.609 ± 0.076	0.011 ± 0.007	0.005 ± 0.005	0.002 ± 0.002	0.018 ± 0.014	_	0.044 ± 0.023	_	0.005 ± 0.005	0.694 ± 0.081	
2004	0.852 ± 0.125	0.013 ± 0.013	0.005 ± 0.005	_	_	_	0.020 ± 0.016	0.033 ± 0.021	_	0.923 ± 0.129	
2005	1.028 ± 0.110	0.034 ± 0.017	0.011 ± 0.008	0.003 ± 0.003	0.005 ± 0.005	_	0.161 ± 0.098	0.024 ± 0.015	_	1.265 ± 0.149	
2006	0.909 ± 0.108	0.042 + 0.020	_	0.006 + 0.006	0.003 + 0.003	_	0.015 ± 0.015	0.085 ± 0.073	_	1.060 ± 0.133	
2007	0.847 ± 0.093	_	0.005 + 0.005	0.007 + 0.006	0.014 + 0.009	_	0.114 + 0.073	0.031 + 0.019	_	1.019 ± 0.120	
2008	0.947 + 0.142	0.030 ± 0.019	0.011 + 0.008	0.019 + 0.014	0.014 + 0.008	_	0.030 + 0.021	_	0.006 + 0.006	1.056 ± 0.146	
2009	1.073 ± 0.096	0.034 ± 0.016	0.019 ± 0.010	0.003 ± 0.003	0.039 ± 0.017	_	0.068 ± 0.068	_	0.006 ± 0.006	1.242 ± 0.121	
2010	0.972 ± 0.101	0.029 ± 0.016	0.016 ± 0.009	_	0.036 ± 0.036	_	0.254 ± 0.130	0.085 ± 0.073	_	1.391 ± 0.184	
2011	0.998 ± 0.144	0.003 ± 0.003	0.011 ± 0.007	0.005 + 0.004	0.010 ± 0.007	0.003 ± 0.003	0.013 ± 0.013	0.032 ± 0.019	_	1.073 ± 0.146	
2012	0.926 ± 0.131	0.030 ± 0.016	0.025 ± 0.011	_	0.020 ± 0.015	_	0.095 ± 0.071	0.083 ± 0.029	_	1.178 ± 0.154	
2013	1.174 ± 0.122	0.090 ± 0.070	0.013 ± 0.008	0.017 ± 0.01	0.002 ± 0.002	0.003 ± 0.003	0.290 ± 0.127	0.093 ± 0.073	0.005 ± 0.005	1.688 ± 0.203	
2014	1.072 ± 0.115	_	0.019 ± 0.009	0.005 + 0.004	0.002 = 0.002	_	0.100 + 0.071	0.018 ± 0.014	_	1.214 ± 0.136	
Total	13.587 ± 0.415	0.345 ± 0.085	0.157 ± 0.029	0.068 ± 0.021	0.166 ± 0.047	0.006 + 0.004	1.572 + 0.290	0.633 ± 0.170	0.022 + 0.011	16.556 + 0.538	
	Primary and M	lature Secondary	Dense Humid	Tropical Fores	sts						
2001	0.294 ± 0.056	_	0.008 ± 0.006		_	_	0.172 ± 0.099	0.077 ± 0.072	_	0.552 ± 0.135	
2002	0.287 ± 0.042	_	_	_	_	_	0.198 ± 0.105	_	_	0.485 ± 0.113	
2003	0.273 ± 0.054	_	0.005 ± 0.005	_	_	_	0.044 ± 0.023	_	0.005 ± 0.005	0.327 ± 0.059	
2004	0.259 ± 0.043	_	_	_	_	_	0.020 ± 0.016	0.033 ± 0.021	_	0.312 ± 0.050	
2005	0.381 ± 0.049	_	0.005 ± 0.005	_	_	_	0.161 ± 0.098	0.006 ± 0.006	_	0.552 ± 0.110	
2006	0.321 ± 0.048	_	_	_	_	_	0.015 ± 0.015	0.085 ± 0.073	_	0.421 ± 0.089	
2007	0.297 ± 0.046	_	_	0.007 + 0.006	0.005 + 0.005	_	0.114 + 0.073	0.005 ± 0.005	_	0.428 ± 0.087	
2008	0.322 + 0.043	_	0.011 + 0.008	0.019 + 0.014	_	_	0.030 + 0.021	_	_	0.382 ± 0.051	
2009	0.410 ± 0.051	_	0.013 ± 0.008	0.003 + 0.003	0.003 + 0.003	_	0.068 ± 0.068	_	0.006 + 0.006	0.504 + 0.086	
2010	0.389 ± 0.058	_	0.011 ± 0.008	_	_	_	0.254 + 0.130	_	_	0.654 + 0.142	
2011	0.492 ± 0.077	_	_	_	_	0.003 ± 0.003	0.013 ± 0.013	0.032 ± 0.019	_	0.539 ± 0.081	
2012	0.377 ± 0.055	_	0.020 ± 0.010	_	_	_	0.095 ± 0.071	0.070 ± 0.025	_	0.562 ± 0.094	
2013	0.501 ± 0.064	_	0.005 ± 0.005	0.008 ± 0.008	_	0.003 ± 0.003	0.290 ± 0.127	0.093 ± 0.073	0.005 ± 0.005	0.904 ± 0.160	
2014	0.486 ± 0.073	_	0.015 ± 0.009	_	_	_	0.100 ± 0.071	0.018 ± 0.014	_	0.619 ± 0.103	
Total	5.089 ± 0.193	_	0.094 ± 0.021	0.037 ± 0.017	0.008 ± 0.006	0.006 ± 0.004	1.572 ± 0.290	0.418 ± 0.133	0.017 ± 0.010	7.241 ± 0.372	
	Young Seconda	ary Dense Humid	Tropical Fore	sts							
2001	0.640 ± 0.122	_	_	_	0.002 ± 0.002	_	_	_	_	0.642 ± 0.122	
2002	0.558 ± 0.098	_	_	_	_	_	_	_	_	0.558 ± 0.098	
2003	0.225 ± 0.045	_	_	0.002 ± 0.002	_	_	_	_	_	0.227 ± 0.045	
2004	0.419 ± 0.090	_	_	_	_	_	_	_	_	0.419 ± 0.090	
2005	0.479 ± 0.091	_	_	0.003 ± 0.003	0.005 ± 0.005	_	_	0.013 ± 0.013	_	0.500 ± 0.092	

Forest clearing for

			Forest clea	_							
		Agriculture		- Constr	ruction		Industrial		Natural		
Vear ·	Smal	ll-scale	-	Const	uetion	Mining	Selective	Fire	Forest	Total	
Itui	Rotational + Charcoal Production	Semi-permanent	Large-scale	Roads	Residential & Commercial		Logging		Disturbances		
2006	0.366 ± 0.058	-	-	-	0.003 ± 0.003	_	-	_	_	0.368 ± 0.058	
2007	0.361 ± 0.065	_	_	-	0.006 ± 0.006	_	-	_	-	0.368 ± 0.066	
2008	0.423 ± 0.111	_	_	-	0.009 ± 0.006	_	-	_	-	0.431 ± 0.111	
2009	0.423 ± 0.061	_	_	-	0.018 ± 0.009	_	-	_	-	0.441 ± 0.061	
2010	0.372 ± 0.064	-	_	_	_	-	-	0.013 ± 0.013	_	0.385 ± 0.065	
2011	0.333 ± 0.093	_	-	0.005 ± 0.004	-	_	-	-	_	0.339 ± 0.093	
2012	0.273 ± 0.052	_	0.005 ± 0.005	-	0.008 ± 0.008	_	-	0.013 ± 0.013	_	0.298 ± 0.055	
2013	0.351 ± 0.051	-	0.003 ± 0.003	0.010 ± 0.007	0.002 ± 0.002	-	-	_	-	0.367 ± 0.051	
2014	0.419 ± 0.074	-	-	0.005 ± 0.004	0.003 ± 0.003	-	-	_	-	0.428 ± 0.075	
Total	5.644 ± 0.292	_	0.008 ± 0.006	0.025 ± 0.009	0.056 ± 0.017	_	-	0.039 ± 0.023	_	5.772 ± 0.293	
	Primary Wood	lands and Dry Fo	rests								
2001	0.148 ± 0.076	0.008 ± 0.006	_	_	_	-	_	0.072 ± 0.072	_	0.227 ± 0.105	
2002	0.087 ± 0.028	0.023 ± 0.015	_	-	-	_	-	_	-	0.111 ± 0.031	
2003	0.098 ± 0.028	0.011 ± 0.007	_	_	0.005 ± 0.005	-	-	-	_	0.114 ± 0.030	
2004	0.141 ± 0.075	0.013 ± 0.013	_	-	-	_	-	_	-	0.154 ± 0.076	
2005	0.137 ± 0.035	0.034 ± 0.017	_	-	-	_	-	_	_	0.171 ± 0.038	
2006	0.192 ± 0.077	0.042 ± 0.020	_	0.006 ± 0.006	-	_	-	_	-	0.240 ± 0.079	
2007	0.148 ± 0.044	-	_	-	0.003 ± 0.003	_	-	0.026 ± 0.018	_	0.176 ± 0.048	
2008	0.184 ± 0.077	0.030 ± 0.019	-	-	-	_	-	_	0.006 ± 0.006	0.220 ± 0.080	
2009	0.224 ± 0.055	0.034 ± 0.016	-	-	0.018 ± 0.014	-	-	-	-	0.276 ± 0.059	
2010	0.172 ± 0.05	0.029 ± 0.016	-	-	0.036 ± 0.036	-	-	0.072 ± 0.072	-	0.309 ± 0.096	
2011	0.088 ± 0.028	0.003 ± 0.003	0.005 ± 0.005	-	0.005 ± 0.005	-	-	_	-	0.101 ± 0.029	
2012	0.165 ± 0.077	0.030 ± 0.016	-	-	0.013 ± 0.013	-	-	_	-	0.207 ± 0.080	
2013	0.255 ± 0.088	0.090 ± 0.070	_	-	-	_	_	_	_	0.346 ± 0.112	
2014	0.123 ± 0.046	-	-	-	-	-	-	_	-	0.123 ± 0.046	
Total	2.163 ± 0.220	0.345 ± 0.085	0.005 ± 0.005	0.006 ± 0.006	0.079 ± 0.041	-	-	0.170 ± 0.103	0.006 ± 0.006	2.774 ± 0.260	
	Secondary Woo	odlands and Spar	se Secondary I	Humid Tropica	l Forests						
2001	0.017 ± 0.010	-	-	-	-	-	-	_	-	0.017 ± 0.010	
2002	0.144 ± 0.074	-	-	-	-	_	-	_	-	0.144 ± 0.074	
2003	0.013 ± 0.008	-	-	-	0.013 ± 0.013	_	-	_	-	0.025 ± 0.015	
2004	0.034 ± 0.013	-	-	-	-	-	-	_	-	0.034 ± 0.013	
2005	0.031 ± 0.017	-	-	-	-	-	-	0.005 ± 0.005	-	0.036 ± 0.017	
2006	0.031 ± 0.019	-	-	-	-	-	-	_	-	0.031 ± 0.019	
2007	0.036 ± 0.020	-	-	-	-	-	-	-	-	0.036 ± 0.020	
2008	0.018 ± 0.010	-	-	-	0.005 ± 0.005	-	-	_	-	0.023 ± 0.012	
2009	0.015 ± 0.009	-	-	-	-	-	-	_	-	0.015 ± 0.009	
2010	0.025 ± 0.015	-	-	-	-	-	-	-	-	0.025 ± 0.015	
2011	0.085 ± 0.073	-	-	-	0.005 ± 0.005	-	-	_	-	0.090 ± 0.073	
2012	0.110 ± 0.075	-	-	-	-	_	-	-	-	0.110 ± 0.075	
2013	0.066 ± 0.025	_	_	_	-	_	_	-	-	0.066 ± 0.025	
2014	0.043 ± 0.018	_	_	_	-	_	_	-	-	0.043 ± 0.018	
Total	0.668 ± 0.138	_	_	_	0.023 ± 0.015	_	_	0.005 ± 0.005	_	0.696 ± 0.139	

			Forest clearing							
	Smal	Agriculture l-scale		Con	struction		– Industrial Selective	Fire	Natural Forest	Total
Year	Rotational + Charcoal Production	Semi-permanent	Large-scale	Roads	Roads Residential & Commercial		Logging		Disturbances	
	Plantations									
2001	-	-	-	_	_	_	_	_	-	_
2002	0.005 ± 0.005	_	0.013 ± 0.013	_	_	_	_	_	_	0.018 ± 0.014
2003	-	-	_	_	_	_	_	_	-	_
2004	-	_	0.005 ± 0.005	_	_	_	-	_	_	0.005 ± 0.005
2005	-	-	0.005 ± 0.005	_	-	_	-	_	-	0.005 ± 0.005
2006	_	-	_	_	_	_	_	_	_	_
2007	0.005 ± 0.005	-	0.005 ± 0.005	_	_	_	_	_	_	0.010 ± 0.007
2008	_	-	_	_	_	_	_	_	_	_
2009	_	_	0.005 ± 0.005	_	_	_	_	_	_	0.005 ± 0.005
2010	0.013 ± 0.013	_	0.005 ± 0.005	_	_	_	_	_	_	0.018 ± 0.014
2011	_	_	0.005 ± 0.005	_	_	_	_	_	_	0.005 ± 0.005
2012	_	_	_	_	_	_	_	_	_	_
2013	_	_	0.005 ± 0.005	_	_	_	_	_	_	0.005 ± 0.005
2014	_	_	_	_	_	_	_	_	_	_
Total	0.023 ± 0.015	-	0.050 ± 0.019	_	-	_	_	_	-	0.073 ± 0.024

Table S3. Comparison of forest loss estimates for DRC. All forest loss area estimates except FAO FRA are gross loss estimates. FAO FRA reports net change area, which for primary forests should be equal to gross loss area. Ernst et al. (2013) results were challenging to compare with other studies, since the publication provided only relative measures of forest loss (%/yr) and did not report denominator (national forest area?).

	So	urce		Definition		Annual forest loss area (1000ha/yr) ± 95% CI						
Study	Forest loss area	Forest type information	Forest	Forest type	Study period	All forests	Primary (natural) HTF	Primary woodlands	Secondary Woodlands	Secondary HTF		
FAO FRA 2015 (41)	National repo	orting	>0.5 ha, >10% TCC,	Primary forest: naturally regenerated forest of native species, no clearly visible indications of	1990-2000	311	73		238			
			Land use definition	human activities; Other naturally regenerated forest	2000-2010	311	107	1	205			
				(with indications of human activities)	2010-2015	311	140)	17	1		
Potapov et al. 2012 (16)	National-scal resolution, La	e map (60m andsat-based)	>30% TCC, >5m height	Primary and secondary HTF >60% TCC,	2000-2005	347	73	2	10	234		
	,	,	U	Woodlands 30-60% TCC	2005-2010	395	140	6	56	189		
Hansen et al.	Global map		>5m height,		2000-2005	426	_	_	_	—		
2013 (14)	(30m		any TCC		2005-2010	553	_	_	_	—		
	Landsat-	_		_	2010-2015	850	_	_	_	_		
	based)				2016	1380	_	_	_	-		
Tyukavina et al. 2013 (25)	Sample (30 m Landsat- based)	Potapov et al. (2012) map	>30% TCC, >5m height	Primary and secondary HTF >60% TCC, Woodlands 30-60% TCC	2000-2010	670 ± 108	179 ± 65	90	<u>+</u> 44	401 ± 74		
Ernst et al. 2013 (23)	Ernst et al.Sample (20x20 km blocks of 30m Landsat or 15 AsterTree cover >5m height2013 (23)data)		Tree cover >5m height	Three TCC gradations (>70%, 40- 70%, 10-40%), not clear from method description how they are	1990-2000	$\begin{array}{c} 0.15\%/yr \pm \\ 0.02\%/yr \end{array}$	_	_	_	_		
	,			combined into the final estimate for "dense" forests	2000-2005	$\begin{array}{c} 0.32\%/yr \pm \\ 0.05\%/yr \end{array}$	_	_	_	_		
Tyukavina et al. 2015 (<i>17</i>)	et Sample (30m Landsat- 7) based)		>25% TCC, >5m height	TCC, "Natural" forests, including primary and mature secondary forests, and natural woodlands without evidence of prior disturbances; "Managed" forests, including plantations and shifting cultivation		808 ± 258	358 ± 158		450			
Turubanova et al. 2018	National-scal Landsat-base	e map (30m d)		Primary HTF >60% TCC, > 5m height	2002-2014	—	217	_	_	—		
(33)	Sample (30m based)	mple (30m Landsat-			2002-2014	-	297 ± 69	_	-	_		
Current study	Sample (30m based)	Landsat-	>25% TCC, >5m height	Primary and secondary HTF >60% TCC,	2000-2005	769 ± 93	269 ± 49	92 ± 44	28 ± 14	378 ± 67		
Study Duscu,				Woodlands 25-60% TCC (Plantations not reported separately	2005-2010	841 ± 91	327 ± 55	136 ± 50	18 ± 11	357 ± 56		
				here, but included in "all forests")	2010-2014	847 ± 119	380 ± 53	125 ± 48	64 ± 42	276 ± 49		

Interpretation	Source of uncertainty	Measures to address uncertainty
Presence of forest	Unsure whether the pixel was forested or covered with shrub (< 5m) in 2000 in case very high- resolution imagery for the sampled pixel is absent	 Look for the nearby areas with the similar spectral signature in Landsat and available very high-resolution imagery; Check Landsat-modeled year 2000 tree cover height for the pixel
loss	Unsure whether it is repeated clearing of Young Secondary HTF or re-clearing of non-woody fallows	 Look for the absence of large seasonal variation in the pre-disturbance 16-day Landsat data; Do not record the second/third re-clearing of vegetation in case of rotation agriculture.
Year of forest loss	Missing cloud-free observations in the years prior to detected forest disturbance	 Use non-cloud-screened 16-day data to maximally employ hazy/cloud-contaminated data; Report annual loss stats in the form of the 3- year moving averages
Pre-disturbance forest type	Unsure whether it is Primary and Mature Secondary or Young Secondary HTF	 Look at the landscape scale in Landsat and Google Earth to identify the boundaries of active rural complex; Check Landsat-modeled year 2000 tree cover and height for the pixel; Check using year 2000 primary forest mask (Turubanova et al. 2017).
	Unsure whether it is Young Secondary HTF or Primary Woodlands and Dry Forests	 Check for seasonality in Landsat 16-day observation graphs; Check Landsat-modeled year 2000 tree cover for the pixel.
	Unsure whether it is Small- or Large-scale Clearing for Agriculture	- Check if annual clearing size is above or below 10 ha.
Forest disturbance driver	Unsure whether it is Rotational or Semi-permanent Small-scale Clearing for Agriculture	 Check for the indication of forest regrowth in Landsat 16-day graphs (tree cover gain is a sign of rotational agriculture); If forest clearing happened at the end of study period (2012-2014), look for the presence of forest regrowth in the nearby disturbance patches.
	Unsure whether it is escaped Fire or Rotational Small-scale Clearing for Agriculture	 Check if pixel immediately starts regrowing after disturbance; Check if the field boundaries are visible within the fire scar in very high-resolution

imagery.

Table S4. Major sources of uncertainty during sample interpretation and measures to address them.

-	San	nple size, sam	pled pixels	$s(n_h)$	Stratum size, pixels (N_h)					
<u>-</u>		Stratum				Stratum				
Country	Loss	Probable Loss	No Loss	Total	Loss	Probable Loss	No Loss	Total		
Democratic Republic of the Congo	1,594	2,157	2,737	6,488	107,066,310	361,126,985	2,570,501,636	3,038,694,931		
Central African Republic	109	223	837	1,169	7,899,514	37,899,759	765,814,878	811,614,151		
Cameroon	141	317	605	1,063	9,873,930	52,084,816	547,287,848	609,246,594		
Republic of the Congo	73	166	461	700	5,667,003	28,752,588	410,092,596	444,512,187		
Gabon	63	116	324	503	3,709,753	22,993,150	317,391,039	344,093,942		
Equatorial Guinea	20	21	36	77	883,138	3,977,387	30,277,866	35,138,391		
Total	2,000	3,000	5,000	10,000	135,099,648	506,834,685	4,641,365,863	5,283,300,196		

Table S5. Distribution of sampled pixels (n_h) among the country poststrata and three sampling design strata (loss, probable loss, and no loss) and strata sizes (N_h) .