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Abstract
Recent advances in remote sensing enable the mapping and monitoring of carbon stocks without relying
on extensive in situ measurements. The Democratic Republic of the Congo (DRC) is among the
countries where national forest inventories (NFI) are either non-existent or out of date. Here we
demonstrate a method for estimating national-scale gross forest aboveground carbon (AGC) loss and
associated uncertainties using remotely sensed-derived forest cover loss and biomass carbon density
data. Lidar data were used as a surrogate for NFI plot measurements to estimate carbon stocks and AGC
loss based on forest type and activity data derived using time-series multispectral imagery. Specifically,
DRC forest type and loss from the FACET (Forêts d’Afrique Centrale Evaluées par Télédétection)
product, created using Landsat data, were related to carbon data derived from the Geoscience Laser
Altimeter System (GLAS). Validation data for FACET forest area loss were created at a 30-m spatial
resolution and compared to the 60-m spatial resolution FACET map. We produced two gross AGC loss
estimates for the DRC for the last decade (2000–2010): a map-scale estimate (53.3± 9.8 Tg C yr−1)

accounting for whole-pixel classification errors in the 60-m resolution FACET forest cover change
product, and a sub-grid estimate (72.1± 12.7 Tg C yr−1) that took into account 60-m cells that
experienced partial forest loss. Our sub-grid forest cover and AGC loss estimates, which included
smaller-scale forest disturbances, exceed published assessments. Results raise the issue of scale in forest
cover change mapping and validation, and subsequent impacts on remotely sensed carbon stock change
estimation, particularly for smallholder dominated systems such as the DRC.
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1. Introduction

The United Nations Reducing Emissions from Deforestation
and forest Degradation (UN-REDD) program seeks to

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

compensate developing countries for avoiding emissions due
to likely future forest clearing and logging (Houghton 2012)
through the emerging REDD+ mechanism. The success of
REDD+ will be defined by confirmed reductions in rates of
deforestation and forest degradation. A program requirement
is the capability to accurately map and monitor changes in
forest carbon by estimating gross emissions as a function of
area of forest loss and density of carbon stocks within areas of
forest loss.

11748-9326/13/044039+14$33.00 c© 2013 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/1748-9326/8/4/044039
mailto:atyukav@umd.edu
http://stacks.iop.org/ERL/8/044039
http://creativecommons.org/licenses/by/3.0


Environ. Res. Lett. 8 (2013) 044039 A Tyukavina et al

National forest inventories (NFIs) could provide detailed
and comprehensive information to produce national-scale
carbon stock and change estimates. However, NFIs have
not been established in many developing countries that
participate in the UN-REDD program (Romijn et al 2012).
The United Nations Food and Agriculture Organization
(FAO) and the UN-REDD are working on the general
guidelines for implementing multi-objective NFIs in these
countries (UN-REDD 2011). Meanwhile, alternative methods
of national-scale carbon stocks assessment independent of the
availability of systematically collected ground-based forest
inventory data are being investigated and prototyped (GOFC-
GOLD 2010). Goetz et al (2009) provided an overview of the
satellite-based methods of mapping and monitoring carbon
stocks, and identified three general approaches: ‘stratify
and multiply’ (SM), when a single carbon density value
is assigned to each land cover type; ‘combine and assign’
(CA), extending the SM approach by adding various ancillary
spatial data layers; and ‘direct remote sensing’ (DR) approach,
aimed to derive the carbon stock estimates from machine
learning algorithms based on satellite observations and other
detailed spatial data coupled with field measurements. The
last approach requires acquisition and processing of large
volumes of data to produce a national-scale carbon stock or
loss estimate. The first approach, SM, also referred to as the
‘biome-average approach’ (Gibbs et al 2007), is relatively
easy to implement using a limited set of published data
available at low or no cost. Although this approach is fairly
generalized, in that it does not capture finer-scale spatial
heterogeneity of carbon stocks, the accuracy of the estimates
can be increased via data refinements and overlays with other
data sets in a CA approach.

For a national-level aboveground carbon (AGC) loss
assessment, SM approaches require a national-scale land
cover change dataset (activity data in the IPCC terminology
IPCC 2006) and mean AGC density estimates for each
land cover type (IPCC emission factors, here referred to as
carbon data). Modifying the basic IPCC equation used to
calculate carbon emissions (IPCC 2006, vol 1, chapter 1.2),
the equation to estimate gross AGC loss within a study region
or a country is the following:

AGC loss =
n∑

i=1

1ADiCDi (1)

where 1ADi (activity data) denotes the change in the extent
of a given land cover type i, and CDi (carbon data) represents
average vegetation carbon content per land cover type.

Carbon data that are required for the national-scale AGC
loss assessments in an SM approach could be derived from
field inventory data (e.g. tree DBH and height measurements)
converted to aboveground biomass using allometric equations
(e.g. for tropical forests—from Brown 1997 and Chave et al
2005) or existing databases and maps of biomass carbon
density (e.g. Zheng et al 2013, Gibbs 2006, FAO 2010,
Malhi et al 2006). Alternatively, biomass carbon content can
be mapped using multi-source lidar and radar data that are
capable to capture vertical tree canopy structure (Goetz and
Dubayah 2011, Treuhaft et al 2009). Several regional and

global-scale carbon stock maps have been created recently
using the synergy of field measurements, optical, lidar and
radar remotely sensed data (Saatchi et al 2011, Baccini
et al 2012). Another approach, presented here, is to calibrate
lidar data using co-located field measurements (Baccini et al
2012). In this approach, a model is derived to convert lidar
waveforms into biomass estimates. The derived model is
then extrapolated to a much larger population of lidar shots,
providing a biomass database for assigning carbon density
values to mapped forest cover types.

For REDD+ countries, deforestation is likely to be the
key category for greenhouse gas emissions estimates. A good
practice for these countries is to use at least IPCC Tier two or
three level assessments for this category of emissions, which
implies reporting uncertainties (Maniatis and Mollicone
2010). AGC stock and loss uncertainty estimates are also
crucial if these datasets are to be used as inputs to carbon cycle
and biosphere models. However, published land cover change
datasets that may be used as activity data often lack key
accuracy assessment information (e.g. description of sampling
design, original error matrix, area of each map category, etc)
that would permit error-adjusted estimates of the change area
(Olofsson et al 2013). The objectives of our analyses are: (i) to
illustrate the process of activity data accuracy assessment on
the national level, applicable when using already published
land cover data or when creating a new data set, (ii) to
integrate uncertainties from activity and carbon data in a
national-level forest AGC loss estimate.

In this study, we implemented a SM (‘stratify and
multiply’) approach for assessing gross forest AGC loss in
the Democratic Republic of the Congo (DRC), where forest
cover change is dominated by smallholder land use and
industrial selective logging (Laporte et al 2007). Due to the
aftermath of two civil wars, persistent political unrest and
lack of infrastructure, the DRC does not collect NFI data
required for ground-based estimates of AGC stock and its
change. Our approach employs the best available activity and
carbon data at the national scale—forest extent and loss maps
derived from Landsat imagery (Potapov et al 2012) and AGC
estimates derived from GLAS-based canopy vertical structure
metrics (Baccini et al 2012). Results include new estimates
of error-adjusted area of forest cover loss between 2000 and
2010, gross AGC loss, and associated uncertainties.

2. Data

2.1. Activity data

To estimate the area of forest loss, we used Landsat-based
year 2000 forest cover and 2000–2010 forest cover loss
data from the Forêts d’Afrique Centrale Evaluées par
Télédétection (FACET) product, available online (ftp://
congo.iluci.org/FACET/DRC/). FACET data processing and
mapping methodology are described in Potapov et al (2012).
The FACET dataset provides forest cover and gross forest
cover loss for three forest types: primary humid tropical
forests, defined as mature humid tropical forest with canopy
cover >60%; secondary forests, defined as regrowing forest
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Figure 1. FACET forest cover and forest cover loss (Potapov et al 2012) combined with DRC wetland map (Bwangoy et al 2010):
(a) forested area; (b) woodlands.

with canopy cover >60%; and woodlands, defined as forested
areas with canopy cover 30–60%. The spatial resolution of
FACET data is 60 m per pixel. We further separated these
three forest types into terra firma (dryland) and wetland
sub-classes using the DRC wetland map of Bwangoy et al
(2010), resulting in six forest types in total. FACET forest
cover loss was attributed to these new forest classes (figure 1).
In this manner, the different carbon content of the antecedent
forest cover could be directly related to disturbance dynamics
in terra firma and wetland forested ecosystems. In this
research, we conduct an explicit statistical validation of
FACET forest cover loss for each of these forest types and
derive the error-adjusted estimate of changed area based on
the validation sample.

2.2. Carbon data

Mean AGC density values for each of the forest types
were derived from GLAS-based biomass estimates. Baccini
et al (2012) developed a statistical model to predict AGC
densities observed in the field using GLAS lidar energy
metrics in order to estimate biomass per 65 m diameter
GLAS shot. The model was based on nearly 300 field sites
located in 12 countries across the tropics. GLAS-predicted
AGC explained 83% of variance in the field-measured carbon
density at the GLAS-footprint scale with a standard error of
22.6 Mg C ha−1 (Baccini et al 2012). For this study, we
employed the GLAS-derived biomass data as if they were field
inventory data and did not incorporate this model uncertainty
in downstream calculations. After screening GLAS data for
noise and filtering for slope (≤10◦), 371 458 AGC-estimated
GLAS shots for the years 2004–2008 (figure 2) were analyzed

together with the combined FACET forest cover and DRC
wetland maps to calculate mean AGC density values for the
six target forest classes. Only shots within the forested areas
that did not experience forest cover loss between 2000 and
2010 according to FACET were used for these calculations.
The use of a large number of GLAS-estimated biomass
values to calculate biome-average AGC densities helps avoid
biases often inherent in estimates based on the compilation of
point-based field measurements (i.e. paucity of sites over large
areas, inadequate stratification to capture variability, and other
factors that limit their spatial representativeness).

2.3. Validation data

For the purposes of activity data validation, namely the
uncertainty estimation for the FACET forest cover loss, we
used all available original L1T Landsat images for years
2000 and 2010 available at no charge from USGS archives
(http://glovis.usgs.gov/) and annual Landsat composites for
circa 2000, 2005 and 2010 (Potapov et al 2012). Year 2005
composite images helped identify forest cover loss in the early
2000s that might be difficult to detect in 2010 Landsat images
due to rapid vegetation regeneration in the tropics.

In addition to the use of Landsat images for the
validation (reference) classification, we also employed visual
interpretation of very high spatial resolution images available
for the study region through Google EarthTM and through
a partnership between NASA and NGA that provides
access to unclassified commercial high spatial resolution
satellite data from NGA archives for NASA Earth Science
Investigators (http://cad4nasa.gsfc.nasa.gov/). A total of 1689
high resolution images from multispectral and panchromatic
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Figure 2. 2004–2008 GLAS shots color-coded by the FACET forest type (Potapov et al 2012) combined with wetland map (Bwangoy et al
2010).

sensors (Ikonos, WorldView-1, WorldView-2, Quickbird,
Orbview-5) for 2008–2011 time interval were used for the
visual assessment of validation samples. In total, 503 out of
a final 1061 validation samples had at least one matching
high resolution image available between 2000 and 2013,
either from Google EarthTM or from the NGA archive. These
images facilitated the forest cover loss validation, providing
information about forest cover type on date 1 (2000) or date 2
(2010).

3. Methods

3.1. Uncertainties from activity data

The key objective of activity data validation is to estimate
error-adjusted area of forest cover loss for each forest type and
to quantify its uncertainty. Error-adjusted area estimation uses
validation sample data to adjust area of forest cover loss due to
classification errors (including omission errors and excluding
commission errors) present in the map product (Olofsson
et al 2013). The choice of sampling design is determined

by this objective, as well as by feasibility issues and time
constraints.

3.1.1. Sampling design and sample size. The target
activity data class, forest cover loss, is relatively small
compared with the unchanged forest areas; the sampling
design should increase the sample representation of this rare
class in order to achieve a precise estimate of forest cover
loss accuracy (Khorram 1999). Moreover, our objective is
forest type-specific loss area estimation and its accuracy;
stratified random sampling is an appropriate choice in this
case (Stehman 2009).

Initially, two strata within each forest type class were
considered: ‘no loss’ (forests, undisturbed between 2000 and
2010) and ‘loss’ (2000–2010 forest cover loss). However,
sufficient estimation of loss omission error within the large
‘no loss’ stratum requires special attention. Given a simple
‘loss’ and ‘no loss’ stratification, rates of false negatives
(change omission errors) could be poorly characterized
(Khorram 1999). Furthermore, the FACET national-scale
forest cover loss product is likely to be conservative,
i.e. omitting forest cover loss in comparison to committing
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Table 1. Distribution of samples among forest types using proportional and arbitrary sample allocation strategies for stratified random
sampling.

Forest type

Proportional allocation (% samples)

Arbitrary allocation (% samples)Based on forest area Based on loss area

Primary forest 46 25 33
Secondary forest 11 55 17
Woodlands 21 13 25
Wetland primary forest 19 3 17
Wetland secondary forest 1 3 4
Wetland woodlands 2 1 4

forest loss. To address this issue we identified an additional
‘probable loss’ stratum within each forest type class. This
stratum was constructed to target omitted forest cover loss
in order to improve the loss area estimate for the AGC loss
calculation. We define the ‘probable loss’ stratum as a 1-km
radius circular region around forest cover loss, assuming that
omission of loss is likely to occur in proximity to mapped
loss. The choice of the 1-km wide ‘probable loss’ stratum
is supported by the evidence that increased tree mortality in
temperate and tropical forests is generally observed up to 1 km
from the forest edge (Broadbent et al 2008).

A total of 18 strata were analyzed: ‘loss’, ‘probable loss’,
and ‘no loss’ for each of the six forest types (terra firma and
wetland primary forests, terra firma and wetland secondary
forests, terra firma and wetland woodlands). Allocation of
samples among these strata should effectively address our
validation objective (see section 3.1) of minimizing standard
errors (SEs) of error-adjusted estimators of forest cover loss
area (Stehman 2012).

When considering allocation of samples among forest
types, we examined both the area of forest type and the
area of our target class (forest loss) within each forest type.
Proportional allocation of samples among forest types based
on the forest type area would lead to small sample sizes from
secondary forest, woodlands and wetland forests: almost half
of all samples in this case fall into the dense forest class
(table 1). Although forest cover loss in dense forests that have
high biodiversity and other high-value ecosystem services
is important to estimate correctly, the majority of mapped
forest cover loss occurred in secondary forests. However,
allocation of samples based on the forest cover loss area
leads to the majority of samples being located in secondary
forests. In order to find a compromise between preserving
a sufficient number of samples in the strategically important
dense forest class while adequately representing the relatively
small classes with high proportional forest cover change
(secondary forest, woodlands), we implemented an arbitrary
allocation that was close to proportional by forest type area,
but adjusted for forest loss area (table 1).

The sample size allocation to the three strata within each
forest type was determined as follows. Because it is equally
important for our primary validation objective (estimation
of forest loss area for each forest type based on an error
matrix) to account for committed and omitted loss area,
we addressed the need to account for omission errors by
creating the separate ‘probable loss’ strata within the original
‘no loss’ class. Therefore, when allocating samples among

Table 2. Allocation of sample size among validation strata.

Forest type No loss Probable loss Loss Total

Primary forest 200 70 63 333
Secondary forest 30 87 50 167
Woodlands 100 90 60 250
Wetland primary
forest

80 30 57 167

Wetland
secondary forest

15 15 12 42

Wetland
woodlands

15 15 12 42

loss strata, we chose to have an allocation closer to equal,
which helped to target errors of commission (Stehman 2012)
among the ‘no loss’, ‘probable loss’ and ‘loss’ strata. A total
sample size of 1000 was projected as feasible to be visually
interpreted by expert analysts. We imposed the condition that
a sample size greater than 50 was required for the major
forest types (primary, secondary forests, woodlands, wetland
primary forests), the allocation of sample size per stratum (the
sampling unit is one 60-m FACET pixel) was implemented as
shown in table 2.

For the chosen sample allocation we calculated SEs of
the estimated area of change using hypothetical omission
and commission error rates in order to confirm that the
chosen allocation would not lead to inflated standard errors.
We compared our arbitrary allocation to proportional among
forest allocation with equal and proportional allocation among
loss strata and found that the arbitrary allocation performed
as well or better than the other options. The equation
used to calculate SEs of the estimated area of change for
each forest type is similar to equation (3) from Olofsson
et al (2013). However, after the assignment of reference
values to the samples during expert validation, we found
out that the ‘probable loss’ stratum contributed 35% of the
total variance in primary forest, 50% of the variance in
secondary forest, and 20% of the variance in woodlands.
Additional random samples were added to the ‘probable
loss’ stratum of terra firma primary, secondary forests and
woodlands (20, 30 and 10 samples respectively) in order to
minimize the total SE of the loss area estimate.

3.1.2. Estimating area of forest loss and its uncertainty.
Visual interpretation of validation samples was performed at a
30-m spatial resolution, enabling map-scale and sub-grid error
assessments (FACET was made at a 60 m spatial resolution
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Figure 3. Example of sample block visual interpretation; for the map-scale estimate, 0.5 loss is treated as no loss. The black stripe in the
2010 Landsat loss sample is a data gap due to the Landsat 7 scan-line corrector malfunction.

Table 3. Error matrix of sample counts for map-scale and sub-grid area estimates.

Forest type Map strata

Reference strata

N of pixels in each stratum

Map-scale estimate Sub-grid estimate

No loss Loss No loss Loss

Primary forest No loss 200 0 200 0 147 647 298
No loss–probable loss 89 1 86.5 3.5 56 158 987
Loss 3 60 3 60 2 638 342

Secondary forest No loss 30 0 30 0 5 720 568
No loss–probable loss 107 10 98.5 18.5 35 535 337
Loss 00–10 3 47 3 47 5 619 034

Woodlands No loss 100 0 100 0 51 491 436
No loss–probable loss 98 2 97 3 39 725 284
Loss 00–10 7 53 7 53 1 374 079

Wetland primary forest No loss 80 0 80 0 67 675 696
No loss–probable loss 30 0 30 0 15 706 036
Loss 00–10 9 48 9 48 326 316

Wetland secondary forest No loss 15 0 15 0 1 506 946
No loss–probable loss 15 0 14.5 0.5 2 176 786
Loss 00–10 4 8 4 8 255 498

Wetland woodlands No loss 15 0 15 0 7 003 885
No loss–probable loss 15 0 15 0 2 477 979
Loss 00–10 2 10 2 10 97 176

using resampled 30-m Landsat time-series imagery). We
produced two forest loss area estimates for the DRC for the
last decade (2000–2010): a map-scale estimate accounting
for whole-pixel classification errors in the 60-m resolution
FACET forest cover change product, and a sub-grid estimate
that took into account 60-m cells that experienced partial
forest loss (table 3). For the map-scale estimate we treated

a 60-m validation pixel as ‘loss’ only if the reference forest
loss fraction detected using 30-m Landsat and/or high spatial
resolution was ≥75% of pixel area. For the sub-grid estimate,
three gradations of reference loss fraction per pixel were used:
1 (loss) with reference loss ≥75% of pixel area; 0.5 (mixed
pixels) with reference loss between 75% and 25%; and 0 (no
loss) otherwise (figure 3).
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Table 4. Parameters for the calculation of error-adjusted area of forest cover loss within terra firma primary forests (map-scale estimate).

Primary forest∑
u∈hyu nh ȳh Nh Map area (ha) s2

yh

No loss 0 200 0/200 147 647 298 53 153 027 0.000 000 000
No loss–probable loss 1 90 1/90 56 158 987 20 217 235 0.011 111 111
Loss 60 63 60/63 2 638 342 949 803 0.046 082 949

Total 206 444 627 74 320 066

When the sampling strata and map classes being validated
are the same, equations (2)–(4) from Olofsson et al (2013)
should be used to calculate error-adjusted area of forest cover
loss and its standard error based on a validation confusion
matrix. In our case, there was a mismatch between sampling
strata (‘no loss’, ‘probable loss’, ‘loss’) and map classes
(‘loss’ and ‘no loss’) within each forest cover type arising
from the attempt to target omitted forest cover loss by creating
the additional ‘probable loss’ stratum. Based on sampling
theory (Cochran 1977), the following equation was employed
to produce an unbiased estimator of the area of forest cover
loss within each of the forest cover types when validation
strata and map classes do not match (Stehman 2013, in
review):

Â = Atot ×

∑H
h=1 Nhȳh

N
(2)

where Atot—total area of the forest cover type;
yu = 0.5 or 1 if pixel u (or it’s half) is in reference class ‘forest
cover loss’, and yu = 0 otherwise;

ȳh =

∑
u∈hyu
nh

, the sample-mean of the yu values in stratum h;
nh—sample size in stratum h;
Nh—number of pixels in stratum h;
N—total number of pixels within the forest cover type.

The standard error of the error-adjusted estimate of the
forest cover loss is:

SE(Â) = Atot

√√√√∑H
h=1 N2

h

(
1− nh

Nh

) s2
yh

nh

N2 (3)

where s2
yh =

∑
u∈h(yu−ȳh)

2

nh−1 , the sample variance for stratum h.
A 95% confidence interval (assuming normal distribu-

tion) is:

Â± 1.96SE(Â). (4)

An example of the forest cover loss area estimation for terra
firma primary forests (map-scale estimate) is presented in
table 4 and equations (5)–(7).

Â = 74 320 065.72(0× 147 647 298+ 1
90 × 56 158 987

+
60
63 × 2 638 342)(206 444 627)−1

= 1129 210 ha (5)

SE(Â) = 74 320 065.72

×

[(
147 647 2982

(
1−

200
147 647 298

)
0.0
200

+ 56 158 9872
(

1−
90

56 158 987

)
0.011 111 111

90

+ 2638 3422
(

1−
63

2638 342

)
0.046 082 949

63

)

× (206 444 6272)−1
]1/2

= 226 099 ha (6)

Â = 1129 210± 443 156 ha. (7)

3.2. Uncertainties from carbon data

Table 5 presents the mean and population standard deviation
(STD) derived from the number of GLAS shots per forest
type. Using the SM (‘stratify and multiply’) approach we
assigned a single mean AGC density value to each of the
forest type classes to estimate gross AGC loss. To quantify
the uncertainty of this estimate, we employed the standard
deviation of the sample-mean’s estimate of a population mean,
the standard error of the mean (SEM). According to the central
limit theorem, the distribution of sample estimates of the
mean is normally distributed, enabling us to calculate the 95%
confidence interval (CI) of mean AGC density estimates as
±1.96SEM. Table 5 shows mean AGC densities of our target
forests classes along with their 95% CIs.

3.3. Combination of the uncertainties

When calculating AGC loss for each forest type using
equation (1), uncertainty comes both from activity data (in
our case—forest cover loss) and emission factors (carbon
data). In order to combine uncertainties from these quantities,
the multiplication approach from the recent IPCC Guidelines
for National Greenhouse Gas Inventories (IPCC 2006, vol 1,
chapter 3, p 28, equation (3.1)) was used:

Utotal =

√
U2

1 + U2
2 + · · · + U2

n (8)

where Utotal is the percentage uncertainty in the product of
the quantities (half the 95% confidence interval divided by the
total and expressed as a percentage).

Ui is the percentage uncertainties associated with each of
the quantities.
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Table 5. GLAS-based AGC density estimates for the DRC forest types. Mean AGC densities are given with ±95% CI.

Forest type Mean AGC density (Mg C ha−1) Number of GLAS samples STD

Primary forest 156.8 ± 0.4 115 566 67.03
Secondary forest 94.8 ± 0.7 31 443 67.45
Woodlands 71.2 ± 0.2 121 671 44.24
Wetland primary forest 128.9 ± 0.4 85 923 55.29
Wetland secondary forest 90.7 ± 2.3 3 148 65.83
Wetland woodlands 66.5 ± 0.8 13 707 45.81

Table 6. Original FACET and error-adjusted estimates of 2000–2010 forest cover loss within DRC forest types (±95% CI).

Forest type

2000–2010 forest cover loss (ha)

Error-adjusted

FACET mapMap-scale estimate Sub-grid estimate

Primary forest 1 129 210 ± 443 156 1 690 800 ± 645 694 949 803
Secondary forest 2 994 876 ± 664 625 3 924 262 ± 736 673 2022 852
Woodlands 722 979 ± 396 475 865 990 ± 439 210 494 668
Wetland primary forest 98 925 ± 11 218 98 925 ± 11 218 117 474
Wetland secondary forest 87 440 ± 78 014 87 441 ± 78 014 91 979
Wetland woodlands 29 153 ± 7704 29 153 ± 7704 34 983

For example, for the primary forest stratum, the
calculation of the Utotal (using the map-scale 1AD estimate)
is the following:

Utotal =

√√√√(SE(Â)

Â
× 100

)2

+

(
AGC SEM
Mean AGC

× 100
)2

=

√(
226 099.75
1129 210

× 100
)2

+

(
0.2

156.83
× 100

)2

= 20.02%. (9)

When calculating total gross AGC loss within the DRC
(summing AGC loss values for all forest types), the addition
and subtraction approach from the IPCC Guidelines (IPCC
2006, vol 1, chapter 3, p 28, equation (3.2)) was used to
estimate the uncertainty of the resulting quantity:

Utotal DRC

=

√
(U1x1)2 + (U2x2)2 + · · · + (Unxn)2

|x1 + x2 + · · · + xn|

(10)

where Utotal is the percentage uncertainty in the sum of the
quantities (half the 95% confidence interval divided by the
total and expressed as percentage);

xi and Ui are the uncertain quantities and percentage
uncertainties associated with them.

Thus, the overall uncertainty of gross AGC loss estimate
for the entire DRC is:

Utotal DRC

=

√
(Utotal11AGC1)

2+(Utotal21AGC2)
2+···+(Utotaln1AGCn)2

|1AGC1+1AGC2+···+1AGCn|

(11)

where numbers (1–n) stand for the six forest cover types.

4. Results

Applying the approach of adjustment for the classification
errors described in section 3, we produced estimates of
forest cover loss within target DRC forest classes (table 6).
Error-adjustment significantly increased estimated areas of
forest loss in terra firma forest classes (primary, secondary
forests and woodlands); omission errors prevailed over
commission errors (figure 4). In the wetland forests and
woodlands, on the contrary, more loss was committed in
the map product; error-adjusted loss area estimates were
smaller than those prior to adjustment. SE was highest in
wetland secondary forests and terra firma woodlands. High
uncertainty in the wetland secondary forests is associated
with it being the smallest and spatially discontinuous class.
Woodland is a challenging forest type to map and monitor due
to the gradients of tree canopy cover and seasonality as well
as the comparatively uneven intensity of disturbance events,
all of which contributes to larger SEs.

To compare AGC density estimates for our target forest
classes with published estimates, we calculated average AGC
densities within the 6 DRC forest types using available
spatially explicit vegetation carbon density products (Baccini
et al 2012, Saatchi et al 2011, Gibbs and Brown 2007,
Kindermann et al 2008) and compared them with the
GLAS-based estimates of the current study (figure 5). This
comparison provides a general understanding of how well
our current estimates correspond to existing knowledge.
Examination of figure 5 shows that GLAS-based AGC density
estimates are generally higher than those modeled using
optical remotely sensed data (Baccini et al 2012, Saatchi et al
2011, Gibbs and Brown 2007), probably because of spatial
averaging (Goetz and Dubayah 2011, Zolkos et al 2013), but
don not exceed the estimates of Kindermann et al (2008) who
employed FAO 2005 Forest Resources Assessment statistics.
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Figure 4. Forest cover loss (2000–2010) within DRC forest types; error bars are the 95% CIs.

Figure 5. Comparison of the AGC density estimates from the published datasets (error bars are the 95% CIs) and the current study.

Table 7. Gross AGC loss estimates (2000–2010) with the uncertainty measures for DRC forest types (± is the 95% CI).

Forest type

Map-scale loss area estimate Sub-grid loss area estimate

Utotal (%) Gross AGC loss 2000–2010 (Pg C) Utotal (%) Gross AGC loss 2000–2010 (Pg C)

Primary forest 20.0 0.177 ± 0.070 19.5 0.265 ± 0.101
Secondary forest 11.3 0.284 ± 0.063 9.6 0.372 ± 0.070
Woodlands 28.0 0.051 ± 0.028 25.9 0.062 ± 0.031
Wetland primary forest 5.8 0.013 ± 0.001 5.8 0.013 ± 0.001
Wetland secondary forest 45.5 0.006 ± 0.005 45.5 0.008 ± 0.007
Wetland woodlands 13.5 0.002 ± 0.001 13.5 0.002 ± 0.001

DRC total 9.4 0.533 ± 0.098 9.0 0.721 ± 0.127

Sub-grid gross AGC loss estimates were 20–50% higher
than map-scale ones for the major terra firma forests (primary,
secondary forests and woodlands) and nearly equal for the
less widespread wetland forests (table 7, figures 6(b) and (c)).

Differences between these estimates are mostly associated
with the ‘loss’ and ‘probable loss’ strata, particularly in
regions where primary and secondary forest loss predominate.
There are no significant differences in the forests and
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Figure 6. Forest type and strata averages, aggregated to a 5-km grid: (a) year 2000 AGC; (b) map-scale estimate of 2000–2010 gross AGC
loss; (c) sub-grid estimate of 2000–2010 AGC loss; (d) difference between sub-grid and map-scale estimates. Water bodies are shown in
gray. Note that AGC values for both (b) and (c) are the same for the respective forest types.

woodlands of the ‘no loss’ strata (figure 6(d)). For the whole
of the DRC, the sub-grid AGC loss estimate was 35% higher
than the map-scale estimate (table 7).

The comparison of gross forest cover loss and gross AGC
rates from this study with published estimates is presented in
table 8. We report annual forest cover loss rates separately for
primary and secondary forests, excluding woodlands (table 8)
to best match the definition of forests employed in the
most recent regional sample-based forest cover loss estimate
by Ernst et al (2013) (all tropical moist forests, excluding
woodland savannahs and tropical dry forests).

5. Discussion

The results reported in table 8 need to be considered in the
context of inconsistencies in methodologies, definitions, and
areas of analysis (a direct consequence of the differences
in the definitions of forest and woodlands). Our map-scale
2000–2010 annual forest cover loss estimate within dense
forests (0.35% ± 0.03%) agrees well with the estimates
of Ernst et al (2013) for the first half of the decade
(0.32% ± 0.05%) and of Hansen et al (2013) for 2000–2012
(0.34%). Our map-scale estimate also falls within the

confidence interval of the global sample-based estimate
of Hansen et al (2010), but is significantly higher than
the FACET map-based estimate without error-adjustment
(Potapov et al 2012). The sub-grid estimate, accounting for
the finer-scale forest disturbance, is 30–40% higher than
published estimates for the DRC, and points to the difficulty
of mapping forest change in a landscape where smallholder
shifting cultivation predominates. For example, FACET forest
cover loss has a mean patch area of 1.4 ha (Potapov et al
2012). While patch size is not the same as field size, it
is worth noting that typical shifting cultivation practices
in the tropics employ field sizes well under 1 ha (Aweto
2013). The quantification of such change is challenging
and represented by the comparatively large presence of
mixed pixels in the FACET data. The difference of two
methodologically consistent loss area estimates based on
input data of different resolutions (60-m FACET and 30-m
Hansen et al 2013, table 8) prior to error-adjustment illustrates
the issue: the 30-m product depicts 1.5 times more change
than the 60-m one. Any binary (yes/no) change map will have
scale-dependent omission errors. These ‘cryptic disturbances’
have been reported to add more than 50% of forest cover loss
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Table 8. Comparison of forest cover and carbon loss estimates for the DRC (±95% CI).

Source Extent

2000–2005 2005–2010

Annual gross forest cover loss (% of the forest area)

Current study Map-scale Forests + woodlands 0.32% ± 0.03%
Sub-grid Forests + woodlands 0.42% ± 0.03%
Map-scale Forests 0.35% ± 0.03%
Sub-grid Forests 0.47% ± 0.04%

FACET map Potapov et al (2012)—60 m Forests + woodlands 0.22% 0.25%
Hansen et al (2013)—30 m Forests + woodlands 0.34%

Ernst et al (2013) Forests 0.32% ± 0.05% —
Hansen et al (2010) Forests + woodlands 0.12% ± 0.23% —

Annual net forest cover loss (% of the forest area)
FAO (2010) Forests + woodlands 0.20% 0.20%

Ernst et al (2013) Forests 0.22% 0.22%
Annual gross AGC loss (Tg C yr−1)

Current study Map-scale Forests + woodlands 53.3 ± 9.8
Sub-grid Forests + woodlands 72.1 ± 12.7

Annual gross carbon loss (Tg C yr−1)
Harris et al (2012) Forests + woodlands 23 —

to existing Landsat-scale forest disturbance classifications for
the Amazon Basin (Asner et al 2005).

Table 8 reflects a second type of omission error related
to algorithmic and/or data limitations. Estimates of forest loss
derived at a 30-m spatial resolution, particularly the Hansen
et al (2013) and Ernst et al (2013) products, have comparable
gross forest cover loss rates, 0.34% and 0.32% ± 0.05%.
However, the 30-m validation estimate is 0.47% ± 0.04%.
Large area mapping algorithms are often conservatively
implemented in attempting to avoid commission error. For
validation, the determination of loss/no loss is performed
independently per sample and is free of this consideration.
Differences between the Hansen et al (2013) 30-m map and
the Ernst et al (2013) 30-m sample estimates could be due
to this fact. However, the estimate of Ernst et al (2013) was
also sample based. The additional loss found in our validation
effort compared to Ernst et al (2013), while partially due to
the use of very high spatial resolution data for a portion of the
reference samples, is not easily explained and may be more
related to definitional differences or other methodological
factors. In summary, the difference between the 60-m FACET
loss rates of 0.22% and 0.25% and the 30-m loss rates of
0.34% and 0.32% is most likely related to the differing scales
of measurement. The difference between the 30-m loss rates
of 0.34% and 0.32% and the validation rate of 0.47% is most
likely related to limitations in mapping versus sampling or
to other methodological factors. The discrepancy between
map-scale and sub-grid estimates emphasizes the issue of
scale in change area estimation for smallholder dominated
landscapes like the DRC.

The approach for validating activity data employed in
this study is relatively straightforward and easy to implement.
The method allows for the generation of error-adjusted loss
area estimates from the existing land cover and vegetation
maps. This approach does not require large volumes of data
processing and is therefore not limited by computational
facilities. The use of open access medium- and high resolution
imagery for map product validation (USGS Landsat archive,

Google EarthTM high resolution imagery) allows defining
reference values of validation samples without in situ
measurements. Despite its advantages, the method is sensitive
to sampling design and the associated decision of how to
allocate the sample size among validation strata. For the strata
and sample size allocation implemented in this study, the
decisions were advantageous; for the four largest forest types,
the reduction in standard error attributable to the stratification
was substantial. Specifically, the gain in precision due to
stratification can be computed from the sample data (Cochran
1977, section 5A.11) as the ratio of the standard error that
would have been obtained from simple random sampling
to the standard error obtained from the stratified design
implemented (same sample size for both designs). For the four
largest forest types, these ratios were 1.42 for primary forest,
1.10 for secondary forest, 1.32 for woodlands, and 23.21 for
wetland primary forest (the latter estimate is likely inflated by
the fact that two of the three strata had 0% forest loss). The
methodology is also highly dependent on the knowledge base
of the remote sensing experts performing visual interpretation
of validation samples. Finally, it is a function of the quality of
the reference imagery and the resulting clarity or conversely
ambiguity in assigning change per validation sample. The
map-scale and sub-grid estimates reflect the importance of this
issue.

A further consideration in assessing the results concerns
the reference data and the potential volatility of the sample-
based estimate itself. Table 4 illustrates this issue. The ‘loss’
stratum records 60 of 63 samples as having experienced terra
firma primary forest cover loss, representing 905 574 ha of
error-adjusted forest loss area. For the ‘probable loss’ stratum,
1 of 90 samples was interpreted as having experienced forest
cover loss. Due to the much larger size of this stratum, this one
sample accounts for an estimated 224 635 ha of error-adjusted
forest loss area, or fully 20% of terra firma primary forest
cover loss. Without the use of the ‘probable loss’ stratum
and the inclusion of this single sample of commission error,
results would indicate a slight underestimate of terra firma
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forest cover loss. Validation studies should formally consider
likely regions of false negatives of forest change in developing
stratified sampling methods for error-adjusted area estimation.
The validity of the sample-based estimate is a function of
many factors, including the vagaries of any individual sample
data set used in creating the error-adjusted estimates.

Estimates of carbon density derived using different
methods can vary considerably within the same region
(Houghton et al 2001), introducing uncertainty to the carbon
loss estimation. However, recent published estimates of
carbon loss from deforestation differ primarily due to major
disagreements in the quantification of the areal extent of forest
cover loss (Pan et al 2011, Harris et al 2012). The DRC gross
AGC loss estimates from the current study (map-scale and
sub-grid) are 2 to 3 times higher than the biomass carbon
loss (total carbon, above- and belowground) estimate of Harris
et al (2012) (table 8) due primarily to differences in the
estimated area of forest cover loss. The Harris et al (2012)
estimate is based on a global forest cover loss product by
Hansen et al (2010) that is highly uncertain in the DRC
(SE = 100%, see table 8). Hansen et al (2010) employed
a pan-tropical MODIS-based stratification to target sample
allocation with only 7 samples located in the DRC. The
small sample size resulted in a high standard error (table 8).
Harris et al (2012) reported a 90% carbon loss prediction
interval for the DRC, based on a Monte Carlo approach:
16–32 Tg C yr−1; our current DRC gross AGC loss estimates,
map-scale (53.3 Tg C yr−1) and sub-grid (72.1 Tg C yr−1),
are not within this interval.

In our analysis, DRC gross forest AGC loss assessment
consists only of stand-replacement forest disturbance that
can be observed at the mapping scale and in reference data.
However, forest degradation processes that do not lead to the
complete loss of tree canopy or cause small-scale canopy
openings, and can be detected only in the field or using
dense series of sub-meter remotely sensed data may result
in significant AGC loss at the national scale (IPCC 2003,
Schoene et al 2007). One possible approach to assess the
loss of biomass from these disturbances could be based on
monitoring changes in the area of intact forest landscapes
(Potapov et al 2008) and assigning an AGC loss value to the
forests that have undergone the transition from intact primary
to primary degraded and secondary forests (Margono et al
2012, Zhuravleva et al 2013). For countries such as the DRC,
where large-scale agro-industrial forest disturbance is largely
absent, the question of scale and its impact on AGC loss due
to deforestation and degradation remains an important line of
scientific inquiry.

We employed GLAS-based AGC estimates as a proxy for
the ground-based NFI data. There are some known issues and
limitations concerning the estimation of biomass from GLAS
metrics. For example, GLAS-estimated vegetation heights
often used in AGC models have on average 2–3-m error
when compared with USDA Forest Inventory and Analysis
(FIA) and other field-measured heights (Pflugmacher et al
2008, Lefsky et al 2005, Sun et al 2008). GLAS-derived
biomass estimates are also known to be affected by the
season of data acquisition and terrain slope (Sun et al

2008). In total, GLAS-based AGC models explain from 73%
(Lefsky et al 2005, Pflugmacher et al 2008) to 83% (current
study; Baccini et al 2012) of the variance in field-estimated
biomass. Regional forest inventory data are required to
calibrate and validate the current forest type GLAS-based
estimates. Additional field data collection could further refine
the estimates but, unfortunately, GLAS observations are
not available after 2009, posing a near-term challenge for
improved AGC mapping and monitoring beyond the current
models. As part of the process of establishing an NFI for
the DRC continues, other sources of remotely sensed data
characterizing vegetation vertical structure, such as airborne
lidar or spaceborne radar data, can bridge the gap until
systematic spaceborne lidar measurements become available
to the scientific and REDD+ implementation communities.

6. Conclusion

We applied a method of error-adjustment of forest cover
loss area to produce a national-scale gross forest AGC loss
estimate for the DRC based on a published forest cover loss
dataset. We employed field-calibrated GLAS lidar-derived
biomass carbon densities as a substitute for NFI data, which
do not exist for the territory of the DRC. Two realizations of
the resulting DRC gross AGC loss estimate, map-scale and
sub-grid, were produced. The sub-grid AGC loss estimate
accounted for disturbances finer than the map grid scale of
60 m and was higher than published estimates, highlighting
issues of scale and spatial averaging in AGC estimation.
Omitted disturbances were largely related to smallholder
agriculture land cover change, the detection of which is scale-
dependent. For the FACET product, the input Landsat imagery
were averaged to 60 m and then classified, leading to the
estimated scale-related omission error. Other processing steps
can lead to change omission, either through the algorithm
itself, for example image segmentation, post-processing of
the output classification, or the application of a minimum
mapping unit. In Brazil, where agro-industrial land conversion
results in large forest disturbances, the Brazilian Space
Agency’s PRODES product 6.25 ha minimum mapping
unit (the equivalent of approximately 69 Landsat pixels)
(INPE 2012), provides a viable deforestation monitoring
approach. However, a 6.25 ha minimum mapping unit
for the DRC would omit the majority of change. For
heterogeneous landscapes with change dynamics at or finer
than the resolution of Landsat data, higher spatial resolution
imagery to directly map such changes, or indirect methods
to delimit degraded areas and subsequently relate to in situ
measurements, are required.

Our study also illustrates the importance of reference
forest state in assessing carbon dynamics, as with the
primary, secondary and woodland forest types presented here.
The Brazilian PRODES product, the current standard for
national-scale forest monitoring, quantifies only the loss of
primary forest in the Legal Amazon. While reducing primary
humid tropical forest loss is the main focus of climate
mitigation strategies such as REDD+, other forest types and
even trees outside of forests will be part of national carbon
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accounting schemes. Our study underscored the importance
of monitoring other forest dynamics, as we found AGC loss
in secondary forests to be 140% that of primary forests. The
reuse of secondary forests remains a challenge to carbon
monitoring and the development of appropriate strategies
for reducing emissions, but monitoring all relevant forest
types and dynamics is required as national-scale programs are
developed and implemented.

REDD+ mechanisms will rely on accurate mapping
and monitoring of AGC (Houghton et al 2010). However,
scientific, technical and operational aspects of AGC mapping
and monitoring are still in their infancy. Results from this
study have significant implications for policy initiatives
like REDD+. It is clear that the spatial scale of forest
change characterization, reference information on forest type
and carbon stock, and sample representativeness, can all
dramatically impact AGC loss estimation. For example,
considering change at a 30 m validation scale, an extra 35%
of AGC loss was estimated compared to the 60-m spatial
scale; terra firma secondary forest cover loss accounted for
40% more AGC loss than that of terra firma primary forest
loss; a single validation sample added 20% to map-scale
terra firma primary forest cover loss area. The volatility of
results within this study indicates the DRC to be a challenging
environment for quantifying changes to forest carbon stocks,
with implications for other countries as well. Eventual
national monitoring systems will need to demonstrate
spatio-temporal consistency given the various factors that
impact AGC loss estimation. While absolute accuracies
may differ due to some of the aforementioned factors,
relative consistency for any particular set of observations
and spatial scale should be achievable and implementable.
Demonstrating such consistency will be a proof of readiness
for REDD+ monitoring.
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